Optional?
Considered Harmful?

Jonathan Rothwell (he/him)
Senior software engineer @ Zuhlke

"OMG. Is Optional harmful?
Is it unsafe??
Should we tear them all out of our

codebase???"

0.

However...

Optionalsare easy
to misunderstand

e Thesyntax(e.g. Int?)is alittle
counter-intuitive if you haven't
seen it before

e People nil-coalesce Optionals
en masse to make things compile,
hiding errors until runtime & you
get a screen full of placeholders

e Force-unwrapping can cause your
app to crash

Swift

ABOUT SWIFT

Features

Swift.org and Open Source

Platform Support

BLOG

GETTING STARTED

DOWNLOAD

PLATFORM SUPPORT

DOCUMENTATION

OVERVIEW

SWIFT COMPILER

STANDARD LIBRARY

PACKAGE MANAGER

CORE LIBRARIES

REPL, DEBUGGER &
PLAYGROUNDS

SWIFT ON SERVER

SWIFT EVOLUTION

SOURCE CODE

CONTINUOUS
INTEGRATION

About Swift

Swift is a general-purpose programming language built using a modern approach to safety,
performance, and software design patterns.

The goal of the Swift project is to create the best available language for uses ranging from
systems programming, to mobile and desktop apps, scaling up to cloud services. Most
importantly, Swift is designed to make writing and maintaining correct programs easier for
the developer. To achieve this goal, we believe that the most obvious way to write Swift code
must also be:

Safe. The most obvious way to write code should also behave in a safe manner. Undefined
behavior is the enemy of safety, and developer mistakes should be caught before software is
in production. Opting for safety sometimes means Swift will feel strict, but we believe that
clarity saves time in the long run.

Fast. Swift is intended as a replacement for C-based languages (C, C++, and Objective-C).
As such, Swift must be comparable to those languages in performance for most tasks.
Performance must also be predictable and consistent, not just fast in short bursts that
require clean-up later. There are lots of languages with novel features — being fast is rare.

Expressive. Swift benefits from decades of advancement in computer science to offer
syntax that is a joy to use, with modern features developers expect. But Swift is never done.
We will monitor language advancements and embrace what works, continually evolving to
make Swift even better.

Tools are a critical part of the Swift ecosystem. We strive to integrate well within a
developer’s toolset, to build quickly, to present excellent diagnostics, and to enable
interactive development experiences. Tools can make programming so much more powerful,
like Swift-based playgrounds do in Xcode, or a web-based REPL can when working with
Linux server-side code.

https://www.swift.org/about/

The goal of the Swift project is to create the best available language for uses ranging from
systems programming, to mobile and desktop apps, scaling up to cloud services. Most
Importantly, Swift is designed to make writing and maintaining correct programs easier for

the developer. To achieve this goal, we believe that the most obvious way to write Swift code
must also be:

Safe. The most obvious way to write code should also behave in a safe manner. Undefined
behawor is the enemy of safety, and developer mistakes should be caught before software is

In OdUCt_IO Opting for safety sometimes means Swift will feel strlct but we believe that
clarlty saves time in the long run.

Fast. Swift is intended as a replacement for C-based languages (C, C++, and Objective-C).
As such, Swift must be comparable to those languages in performance for most tasks.
Performance must also be predictable and consistent, not just fast in short bursts that
require clean-up later. There are lots of languages with novel features — being fast is rare.

Expressive. Swift benefits from decades of advancement in computer science to offer
syntax that is a joy to use, with modern features developers expect. But Swift is never done.

| ARCHITECTURE & DESIGN l QCon London (April 8-10, 2024): Learn the emerging_trends. Implement best practices.

Null References: The Billion Dollar Mistake

G UKE e [https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/

View Presentation [Ill Speed: 1X 1.25X 1.5X 2X

Null References:
The Billion Dollar

01:01:58 M iSta ke

Summa
e Tony Hoare

Tony Hoare introduced Null references in ALGOL W back
in 1965 "simply because it was so easy to implement",
says Mr. Hoare. He talks about that decision considering
it "my billion-dollar mistake".

Photograph by Rama, Wikimedia Commons, Cc-by-sa-2.0-fr

Recorded at:

About the conference Key Takeaways QCon

QCon is a conference that is organized by the
community, for the community.The result is a high quality AUG 25, 2009

. * Null references have historically been a bad idea
conference experience where a tremendous amount of

attention and investment has gone into having the best * Early compilers provided opt-out switches for run-time checks, at the
content on the most important topics presented by the expense of correctness Tony Hoare |FOLLOW

by

leaders in our community. QCon is designed with the

e e [[LI i e L T et e T Tt o L

* Programming language designers should be responsible for the errors in

https://commons.wikimedia.org/wiki/User:Rama

Optional

somethingis here, and it is:

Nothing is here

“TODAY IS WEDNESDAY"

This type 1s a message... and part of a system of messages...
pay attention to 1t!
Sending thils message was 1mportant to us.
We considered ourselves to be a powerful culture.
@frozen public enum Optional<Wrapped> : ExpressibleByNilLiteral {

This 1s not a place of honor

No highly esteemed value 1s commemorated here

Nothing valued 1s here

This message 1s a warning about nothingness

This value 1s best shunned and left uninhabited
case none

This **xIS%k% a place of honor
A highly esteemed value 1s commemorated here
This value 1s best unwrapped and processed without any further
care as to whether 1t exists or not
case some(Wrapped)

var metadata: Metadata?

enum Metadata {
case book(author: String, publisher: String, pages: Int)
case tvShow(director: String, actors: [Stringl, producers: [Stringl, numberOfEpisodes: Int)
case movilie(director: String, actors: [Stringl, producers: [Stringl, runtime: Int)

var billingSlug: String? {
switch metadata {
case let .some(.book(author, publisher, pages)):
return "Written by \(author), published by \(publisher), \(pages) pages"
case let .some(.tvShow(director, actors, producers, episodes)):
return "Directed by \(director), starring \(actors), produced by \(producers), \(episodes) episodes"
case let .some(.movie(director, actors, producers, runtime)):
return "Directed by \(director), starring \(actors), produced by \(producers), \(runtime) minutes
long"
case .none:
return nil

¥

var metadata: Metadata?

enum Metadata {
case book(author: String, publisher: String, pages: Int)
case tvShow(director: String, actors: [Stringl, producers: [Stringl, numberOfEpisodes: Int)
case movilie(director: String, actors: [Stringl, producers: [Stringl, runtime: Int)

var billingSlug: String? {
switch metadata {
case let .book(author, publisher, pages):
return "Written by \(author), published by \(publisher), \(pages) pages"
case let .tvShow(director, actors, producers, episodes):
return "Directed by \(director), starring \(actors), produced by \(producers), \(episodes) episodes"
case let .movie(director, actors, producers, runtime):
return "Directed by \(director), starring \(actors), produced by \(producers), \(runtime) minutes
long"
case .none:
return nil

¥

. wlx,,

\\

«*\

-~

‘/0

*screengrab from BONEKICKERS (%908) on BBC1, proba

bMorst TV show of the last 20 years

“You need to account for what happens if this is not here,
because that’s a valid state for us to be in”

—what you're telling a future programmer (probably yourself) when you returnan Optional

A Rogues’ Gallery
of Optional Antipatterns

Defining things as
Optional when
they’re not

® €.g.var 1nput: String? = ""
e Common where people are:
e Unfamiliar with the concept

e Used to other languages, e.g.
JavaScript

e Resolution:
Start removing question marks.
Let the compiler tell you if you
remove one too many &

Returning n1l1 when
an error occurs

e Oftenseeninold APls straight from

Objective-C, e.g.
CGImageSourceCreateWithURL(
CFURL, CFDictionary

) —> CGImageSource?

e Resolution:
Just throwan Error instead.
(If you need to use completion
handlers, try the Result type!)

e You can write wrappers around
older APIls to make them nicer to use

| HAVE NOTHING &

You have a big
document type with
lots of optional fields

e Common when:

e Consuming data from an API, especially e-
commerce

e Storing document types on disk/cloud
storage with changes to the type,
redundant fields, etc.

e First port of call: check the contract.
If you're receiving junk—throw an error

étruct Medialtem: Codable {

var 1id: UUID?
var kind: Kind?

var name: String?
var description: String?
var releaseDate: String?

var starRating: Int?

enum Kind: Codable {
case book
case tvShow
case movie

}

// MARK: Books only

var author: String?
var publisher: String?
var pages: Int?

// MARK: TV shows only
var numberOfEpisodes: String?

// MARK: Movies only
var runtime: Int?

// MARK: Movies and TV shows
var director: String?

var actors: [Stringl?

var producers: [Stringl?

Rationalising monster Optional types with raw types & rich types

"1d": "1b36c3b2",
"kind": "movie",
"name": "Moonlight",
"releaseDate": "2016-10-21",
"runtime" 111,

"director": "Barry Jenkins",
"actors": [

I,

"producers": [

{

"Trevante Rhodes",
"André Holland",
"Janelle Monae",
"Ashton Sanders",
"Jharrel Jerome",
"Naomie Harris",
"Mahershala Ali"

"Adele Romanski",
"Dede Gardner",
"Jeremy Kleiner"

I,

"id": "af253356",

"kind": "tvShow",

"name": "Heartstopper",
"releaseDate": "2022-04-22",
"numberOfEpisodes" 16,
"director": "Euros Lyn",
"actors": [

"Kit Connor",
"Joe Locke",
"Yasmin Finney",
"William Gao",
"Corrina Brown",
"Kizzy Edgell",
"Olivia Colman"

"producers": [

"Patrick Walters",
"Iain Canning",
"Emile Sherman",

"1d": "dd37b8b3",
"kind": "book",
"name": "The Raven Tower",

"releaseDate": "2019-02-26",

"author": "Ann Leckie",
"publisher": "Orbit Books",
"pages": 465

1 Euros Lyn",
'Alice Oseman",
'Hakan Kousetta",
'Jamie Laurenson"

Raw type

struct RawMedialtem: Codable {
var id: UUID?

var kind: Kind?

var name: String?
var description: String?
var releaseDate: Date?

var starRating: Int?

enum Kind: Codable {
case book
case tvShow
case movie

// MARK: Books only

var author: String?
var publisher: String?
var pages: Int?

// MARK: TV shows only
var numberOfEpisodes: String?

// MARK: Movies only
var runtime: Int?

// MARK: Movies and TV shows
var director: String?

var actors: [Stringl?

var producers: [String]l?

struct Medialtem: Identifiable {

var

var
var
var
var

var

id: UUID

name: String
description: String?
releaseDate: Date?
starRating: Int?

metadata: Metadata

enum Metadata {

case book(author: String, publisher: String, pages: Int)

Rich type

case tvShow(director: String, actors: [String]l, producers: [String], numberOfEpisodes: Int)
case movie(director: String, actors: [Stringl, producers: [Stringl, runtime: Int)

@) ® [] v (< O & github.com ¢ ©) @ + O

= O jrothwell / VersionedCodable Q. Type (/) to search >_ +~- O N 8 48

<> Code (%) Issues 2 {9 Pullrequests (») Actions [Projects () Security |~ Insights 83 Settings

4 VersionedCodable ' pubiic {2 Unpin ®uUnwatch 2 ~ % Fork 0 ~ ¢ Star 14~
¥ main ~ ¥ 2 branches © 12 tags Go to file Add file ~ <> Code ~ About €3
A wrapper around Swift's Codable that
,; jrothwell Update README.md reference to SwiftData v 2e703b7 onJul28 © 71 commits allows versioning of Codable types, and
rationalises migrations from older
.github/workflows Fix docs & build/upload for extended types too 5 months ago versions of the type.
.swiftpm/xcode initial commit 5 months ago & jrothwell.github.io/VersionedCodable/...
Sources/VersionedCodable Fix #2: Fix a performance issue by only decoding the version number... 5 months ago swift codable document-type
Tests Fix incorrect error messages in tests 5 months ago
0J Readme
[.gitignore Initial Commit 5 months ago &8 MIT license
[.spiyml update README & .spi.yml 5 months ago N Activity
v 14 stars
[y CONTRIBUTING.md Update documentation 5 months ago
® 2 watching
[LICENSE.md Update documentation 5 months ago % 0 forks
[Package.resolved Add dependency on DocC for Actions 5 months ago
[Package.swift Add dependency on DocC for Actions 5 months ago Releases 12
[README.md Update README.md reference to SwiftData 2 months ago © v1.01
on Apr 30

README.md

If you're persisting Codable types to disk &

V [dCodabl € Swift Compatibility 5.9 | 5.8 . .
e want to be able to carry on opening old versions

& Platform Compatibility iOS | macOS | visionOS | tvOS | watchOS | Linux

without having tons of Optionals everywhere...

miaration om older version his handles a spe ase where vou want to'De apie to cnanae e suucuire o

A wrapper around Swift's Codable that allows you to version your Codable t

Conclusions!

e Remember: an Optional means the APl designer is telling you something
“It’s valid for this not to be here, you need to account for that case”

e Don’t return n11 when something goes wrong.
throwanErrororreturnaResult instead

e Calling an upstream API? Check the contract.
If your response is missing some non-optional fields—the response is junk!

e Use the type system! It's designed to make your life easier
If it's not—you might need to make some changes.
Don't be afraid to transform raw types into richer, safer types

e The type system can’t solve for everything—write your damn tests!!!

diol
"Optional?” [Not!] Considered Harmful!

Written & presented by
Jonathan Rothwell

Thanks to

Lena Mattea Stoxen, Connor Habibi, Robert Hillary, Rob Whittaker
for letting me bounce ideas off them
and to Dr Paul Cadman for setting the standard

Apologies to
Chris Lattner, C.A.R. Hoare, Edsger W. Dijkstra

