
Optional?
Jonathan Rothwell (he/him)

Senior software engineer @ Zühlke

Considered Harmful?

“OMG. Is Optional harmful?
Is it unsafe??

Should we tear them all out of our
codebase???”

No.
However...

Optionals are easy
to misunderstand

• The syntax (e.g. Int?) is a little
counter-intuitive if you haven’t
seen it before

• People nil-coalesce Optionals
en masse to make things compile,
hiding errors until runtime & you
get a screen full of placeholders

• Force-unwrapping can cause your
app to crash

https://www.swift.org/about/

https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/

Photograph by Rama, Wikimedia Commons, Cc-by-sa-2.0-fr

https://commons.wikimedia.org/wiki/User:Rama

Optional

something is here, and it is:

“TODAY IS WEDNESDAY”

Nothing is here

/// This type is a message... and part of a system of messages...
/// pay attention to it!
/// Sending this message was important to us.
/// We considered ourselves to be a powerful culture.
@frozen public enum Optional<Wrapped> : ExpressibleByNilLiteral {

 /// * This is not a place of honor
 /// * No highly esteemed value is commemorated here
 /// * Nothing valued is here
 /// * This message is a warning about nothingness
 /// * This value is best shunned and left uninhabited
 case none

 /// * This **IS** a place of honor
 /// * A highly esteemed value is commemorated here
 /// * This value is best unwrapped and processed without any further
 /// care as to whether it exists or not
 case some(Wrapped)
}

var metadata: Metadata?

enum Metadata {
 case book(author: String, publisher: String, pages: Int)
 case tvShow(director: String, actors: [String], producers: [String], numberOfEpisodes: Int)
 case movie(director: String, actors: [String], producers: [String], runtime: Int)
}

var billingSlug: String? {
 switch metadata {
 case let .some(.book(author, publisher, pages)):
 return "Written by \(author), published by \(publisher), \(pages) pages"
 case let .some(.tvShow(director, actors, producers, episodes)):
 return "Directed by \(director), starring \(actors), produced by \(producers), \(episodes) episodes"
 case let .some(.movie(director, actors, producers, runtime)):
 return "Directed by \(director), starring \(actors), produced by \(producers), \(runtime) minutes
long"
 case .none:
 return nil
 }
}

var metadata: Metadata?

enum Metadata {
 case book(author: String, publisher: String, pages: Int)
 case tvShow(director: String, actors: [String], producers: [String], numberOfEpisodes: Int)
 case movie(director: String, actors: [String], producers: [String], runtime: Int)
}

var billingSlug: String? {
 switch metadata {
 case let .book(author, publisher, pages):
 return "Written by \(author), published by \(publisher), \(pages) pages"
 case let .tvShow(director, actors, producers, episodes):
 return "Directed by \(director), starring \(actors), produced by \(producers), \(episodes) episodes"
 case let .movie(director, actors, producers, runtime):
 return "Directed by \(director), starring \(actors), produced by \(producers), \(runtime) minutes
long"
 case .none:
 return nil
 }
}

*screengrab from BONEKICKERS (2008) on BBC1, probably the worst TV show of the last 20 years

—what you’re telling a future programmer (probably yourself) when you return an Optional

“You need to account for what happens if this is not here,
because that’s a valid state for us to be in”

A Rogues’ Gallery
of Optional Antipatterns

Defining things as
Optional when

they’re not

• e.g. var input: String? = ""

• Common where people are:

• Unfamiliar with the concept

• Used to other languages, e.g.
JavaScript

• Resolution:
Start removing question marks.
Let the compiler tell you if you
remove one too many 😉

Returning nil when
an error occurs

• Often seen in old APIs straight from
Objective-C, e.g.
CGImageSourceCreateWithURL(
 CFURL, CFDictionary
) -> CGImageSource?

• Resolution:
Just throw an Error instead.
(If you need to use completion
handlers, try the Result type!)

• You can write wrappers around
older APIs to make them nicer to use

You have a big
document type with
lots of optional fields

• Common when:

• Consuming data from an API, especially e-
commerce

• Storing document types on disk/cloud
storage with changes to the type,
redundant fields, etc.

• First port of call: check the contract.
If you’re receiving junk—throw an error

Rationalising monster Optional types with raw types & rich types

Rich type

Raw type

Transform to…

{
 "id": "1b36c3b2",
 "kind": "movie",
 "name": "Moonlight",
 "releaseDate": "2016-10-21",
 "runtime" 111,
 "director": "Barry Jenkins",
 "actors": [
 "Trevante Rhodes",
 "André Holland",
 "Janelle Monáe",
 "Ashton Sanders",
 "Jharrel Jerome",
 "Naomie Harris",
 "Mahershala Ali"
],
 "producers": [
 "Adele Romanski",
 "Dede Gardner",
 "Jeremy Kleiner"
]
}

{
 "id": "af253356",
 "kind": "tvShow",
 "name": "Heartstopper",
 "releaseDate": "2022-04-22",
 "numberOfEpisodes" 16,
 "director": "Euros Lyn",
 "actors": [
 "Kit Connor",
 "Joe Locke",
 "Yasmin Finney",
 "William Gao",
 "Corrina Brown",
 "Kizzy Edgell",
 "Olivia Colman"
],
 "producers": [
 "Patrick Walters",
 "Iain Canning",
 "Emile Sherman",
 "Euros Lyn",
 "Alice Oseman",
 "Hakan Kousetta",
 "Jamie Laurenson"
]
}

{
 "id": "dd37b8b3",
 "kind": "book",
 "name": "The Raven Tower",
 "releaseDate": "2019-02-26",
 "author": "Ann Leckie",
 "publisher": "Orbit Books",
 "pages": 465
}

Decode

If you’re persisting Codable types to disk &
want to be able to carry on opening old versions
without having tons of Optionals everywhere…

Conclusions!

• Remember: an Optional means the API designer is telling you something
“It’s valid for this not to be here, you need to account for that case”

• Don’t return nil when something goes wrong.
throw an Error or return a Result instead

• Calling an upstream API? Check the contract.
If your response is missing some non-optional fields—the response is junk!

• Use the type system! It’s designed to make your life easier
If it’s not—you might need to make some changes.
Don’t be afraid to transform raw types into richer, safer types

• The type system can’t solve for everything—write your damn tests!!!

“Optional?” [Not!] Considered Harmful!
Written & presented by
Jonathan Rothwell

Thanks to
Lena Mattea Stöxen, Connor Habibi, Robert Hillary, Rob Whittaker
for letting me bounce ideas off them
and to Dr Paul Cadman for setting the standard

Apologies to
Chris Lattner, C.A.R. Hoare, Edsger W. Dijkstra

diolch ✨

